If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10b^2+33b-20=0
a = -10; b = 33; c = -20;
Δ = b2-4ac
Δ = 332-4·(-10)·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-17}{2*-10}=\frac{-50}{-20} =2+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+17}{2*-10}=\frac{-16}{-20} =4/5 $
| x2−9x+20=x | | -3x+46=x+14 | | 36x^2-36x+109=0 | | k−71=81 | | x/5-14=-17 | | 9/m+4=7 | | 9x-(2x-4)=5(x-1) | | 378=c−56 | | 2a-9=13-9a | | 2/3(6x-12)=40 | | 2a-9a=12-9a | | Y=x+68 | | 5x^2-4x+80=0 | | 2y+14=42+5y | | 43+99+x=180 | | r−85=51 | | 66+65+x=180 | | 3n-6=6n+30 | | (x-1)^2/6-8/3=7/2 | | m=37+14 | | 66+74+x=180 | | 15-2x=42 | | x/(11/5)=(3/2) | | 149-u=224 | | 3x-(7-2x)=15 | | 7 = b/4 | | 32x+16=32x | | 7 = b4 | | 4x+26=2-2x | | w=71+15 | | x2+3x−28=0 | | 63+75+x=180 |